Extreme ¹⁶O-rich CAIs in Isheyevo chondrite

N. SAKAMOTO¹ AND N. KAWASAKI¹

¹Hokkaido University (naoya@ep.sci.hokudai.ac.jp)

Introduction: Oxygen isotopic composition of the Solar System is believed to be formed by mixing of ¹⁶O-rich and ¹⁶O-poor reservors. The ¹⁶O-poor end member ($\Delta^{17}O = +85\%$) reported from cosmic symplectites composed of magnetite and iron sulfide infers that the ¹⁶O-poor reservor is H₂O [1]. On the other hand, several candidates are reported for ¹⁶O-enriched resorvoir from a chondrule named a006 ($\Delta^{17}O = -37\%$) [2], 4 CAIs ($\Delta^{17}O = -37 \sim -32\%$) [3,4] and the Sun ($\Delta^{17}O = -28\%$) [5] relative to other CAIs ($\Delta^{17}O = -23\%$) [e.g. 6]. In this study, we surveyed ¹⁶O-rich CAIs in Isheyevo chondrites to investigate the ¹⁶O-rich end menber.

Experimental: Thirteen thick sections of Isheyevo chondrite were newly prepared. X-ray elemental maps were obtaind for whole sections by FE-SEM-EDS. Oxygen isotope analysis were performed by SIMS.

Result and discussion: Oxygen isotopic compositions of 263 CAIs were measured and 4 extreme ¹⁶O-rich CAIs were found. Two CAIs are composed of grossite core rimmed by spinel, melilite and Ti-rich diopside layer (Figure) and others lack diopside and/or melilite. While the heterogeneous composition of grossite ($\Delta^{17}O = -36 \sim -32\%$) would be affected by altered feature of grossite, the spinel grains have uniform ¹⁶O-rich compsition ($\Delta^{17}O = -37\%$). If we draw a line in 3 oxygen isotope diagram with the extreme ¹⁶O-rich spinel and spinel in chondules near the CAI, the slope is in good agreement with a slope of olivine in a006 chondrule and porphiritic olivine chondrule infer that the oxygen isotopic composition of the spinel grains maintain the signature of an ¹⁶O-rich end member of the Solar System.

References: [1] Sakamoto *et al.* (2007) *Science* 317, 231-233. [2] Kobayashi *et al.* (2003) *Geochemical J.* 37, 663–669. [3] Gounell *et al.* (2009) *ApJ* 698, L18-L22. [4] Krot *et al.* (2017) *GCA* 201, 185-223. [5] McKeegan *et al.* (2011) *Science* 332, 1528-1532. [6] Kawasaki *et al.* (2018) *GCA* 221, 318-341.

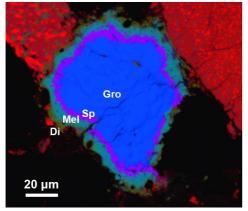


Figure Combined X-ray elemental map of an extreme ¹⁶O-rich CAI 16-1-20 from Isheyevo chondrite in Mg (red), Al (green), and Ca (blue).